$$
\text { Revien } \mathscr{R}_{\text {iollems } 1} 1
$$

1) Say everything you can about the following matrix.
$\left[\begin{array}{ccccc}5 & 10 & 0 & 0 & 0 \\ 1 & 2 & 7 & 7 & 7 \\ 0 & 1 & 7 & 7 & 7 \\ 0 & 0 & 3 & 3 & 3\end{array}\right]$

In particular, address the following incomplete list of interesting things:

- What is its echelon form? Identify the elementary row operations you used.
- What is its reduced echelon form?
- Are the columns linearly independent or dependent?
- What is the span of the columns?
- If linearly independent, why? If linearly dependent, illustrate the linear combination that is zero.
- Construct a homogenous matrix equation. Which are the free and leading variables? How many solutions are there?
- Construct a nonhomogenous matrix equation. How many solutions are there?
- Solve your nonhomogenous equation, what is the general solution?
- What is the associated linear transformation?
- What is the domain and range of the associated linear transformation?
- Is the linear transformation one-to-one? Onto?

2) Say everything you can about the following vectors.
$\left[\begin{array}{l}3 \\ 6 \\ 7\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$

In particular, all the previous items previous problem applies to this as well.
3) How about these vectors?

$$
\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1
\end{array}\right],\left[\begin{array}{l}
2 \\
4
\end{array}\right]
$$

4) Find linear transformation $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{4}$ that is one-to-one but not onto.
5) Find a system of equations in which the solutions form a " \mathbb{R}^{2} space".
6) Find a 3×3 matrix whose inverse requires exactly two elementary row operations to find.
